
Physics 523, Quantum Field Theory II
Homework 10

Due Wednesday, 24th March 2004

Jacob Lewis Bourjaily

Asymptotic Symmetry
Let us consider the theory generated by the Lagrangian,

L =
1
2

(
(∂µφ1)2 + (∂µφ2)2

)− λ

4!
(
φ4

1 + φ4
2

)− 2ρ

4!
(
φ2

1φ
2
2

)
.

From this Lagrangian we may compute the Feynman rules. We notice that while the φ4
i interaction

has a symmetry of 4! to cancel the denominator, there is only a symmetry of 4 associated with the φ2
1φ

2
2

vertex and therefore the vertex factor is −i4 · 2ρ
4! = −iρ

3 .
After we have renormalized with canonical renormalization conditions, the Feynman rules are: 1

�= −iλ � = i/(p2 + iε)�= −iλ � = i/(p2 + iε)�= −iρ/3

�× = −iδλ �× = ip2δφ1 �× = −iδλ �× = ip2δφ2 �× = −iδρ/3

Let us now compute the β-functions for the couplings λ and ρ. To do this, we require the renormal-
ization counter-terms δλ and δρ.

To the one-loop order, we can find δλ by computing,

�=�+�+�+�+�+�+�+�×
= −iλ + (−iλ)2 [V (t) + V (s) + V (u)] + (−i

ρ

3
)3 [V (t) + V (s) + V (u)]− iδλ,

= −iλ−
(

λ2 +
ρ2

9

)
[V (t) + V (s) + V (u)]− iδλ.

Now, we notice that the integral V (k) is identical in all diagrams. In fact, every one-loop diagram
we will concern ourselves with give the same loop integral V (k). Let us compute the divergent piece of
V (k). Noticing the symmetry factor of 1

2 and recalling our early results of dimensional regularization,

V (k) =
1
2

∫
ddk

(4π)d

i

(k2 + iε)
i

((p− k)2 + iε)
,

= −1
2

∫ 1

0

dx

∫
dd`

(4π)d

1
(`2 −∆)2

,

= −1
2

∫ 1

0

dx
i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2
,

∼
d→4

− i

32π2

2
ε
→ − i

32π2
log

Λ2

M2
.

Therefore, applying the canonical renormalization conditions, we see that

δλ =
3

32π2

[
λ2 + (ρ/3)2

]
log

Λ2

M2
.

Because there are no divergent self-energy diagrams in this theory to one-loop order2, we have that
the β-function for λ is given precisely by twice the coefficient of the log divergence in δλ.

∴ βλ =
3

16π2

[
λ2 + (ρ/3)2

]
. (1.b.1)

1Notice that we have usedfaf to represent the field φ1 and we have usedhah to represent the field φ2.
2It is clear that the φ4 interaction does not itself offer any self-energy divergences to one-loop order. Furthermore, we

see that the φ2
1φ2

2 interaction’s contribution to self-energy also involves a loop independent of external momentum and

therefore will not diverge.
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Similar to our computation above, to find βρ we must compute the renormalization counter-term δρ.
To the one-loop order, we can find δρ by computing,

�=�+�+�+�+�+�×
We notice that the symmetry factor of 2, included in our evaluation of the function V (k), should

not be included for the penultimate and antepenultimate diagrams because distinct fields run in the
loop. Therefore, the loop integral for each of those two diagrams will contribute 2V (k) to to the total
amplitude. Noting this subtlety, we find that

iM = −i(ρ/3) + (−iλ)(−iρ/3) [V (t) + V (t)] + (−iρ/3)2 [2V (u) + 2V (s)]− iδρ/3.

Recall that we have already computed the divergence of the function V (k) and noted that it was
independent of k. Therefore,

iδρ/3 = (−iλ)(−iρ/3) [V (t) + V (t)] + (−iρ/3)2 [2V (u) + 2V (s)] ,

= −λρ/3
−i

16π2
log

Λ2

M2
− (ρ/3)2

−i

8π2
log

Λ2

M2
,

∴ δρ =
1

16π2

[
λρ + 2ρ2/3

]
log

Λ2

M2
.

Because there are no divergent self-energy diagrams in this theory to one-loop order, we have that
the β-function for ρ is given precisely by twice the coefficient of the log divergence in δρ.

∴ βρ =
1

8π2

[
λρ + 2ρ2/3

]
. (1.b.2)

Let us now consider the β-function associated with the ration λ/ρ. Using the chain rule for differen-
tiation and the definition of the general β-function, we see that

βλ/ρ =
1
ρ2

[βλρ− βρλ] =
1
ρ2

[
3λ2ρ

16π2
+

ρ3

48π2
− λ2ρ

8π2
− ρ2λ

12π2

]
,

=
(λ/ρ)2ρ
16π2

+
ρ

48π2
− (λ/ρ)

12π2
,

=
ρ

48π2

[
3(λ/ρ)2 − 4(λ/ρ) + 1

]
,

∴ βλ/ρ =
ρ

48π2
(3λ/ρ− 1) (λ/ρ− 1) . (1.c.1)

We see immediately that the two roots of βλ/r occur when λ/ρ = 1, 1
3 and because the second

derivative of βλ/r is 6 > 0, we know that βλ/ρ < 0 for λ/ρ ∈ ( 1
3 , 1) and βλ/r > 0 for λ/ρ > 1. Therefore,

for all λ/ρ > 1
3 , λ/ρ will flow to λ/ρ = 1. See Figure 1 below.

Therefore at large distances the couplings will flow to λ = ρ. This introduces a continuous O(2)

symmetry into the theory. To see this, let us define ϕ ≡
(

φ1

φ2

)
. In this notation, the Lagrangian

simply reads

L =
1
2
(∂µϕ)2 − λ

4!
ϕ4. (1.e.1)

This Lagrangian is clearly invariant to O(2) transformations which correspond to changing the phase
of ϕ.
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Figure 1. Renormalization Group Flow as a function of scale. Arrows show p → 0 flow.



PHYSICS 523: QUANTUM FIELD THEORY II HOMEWORK 10 3

Asymptotic Freedom
Let us consider a theory with a coupling constant g such that

β(g) = −β1g
3

16π2
and γ(g) =

γ1g
3

16π2
,

for some positive constants β1, γ1.
The renormalized correlation functions satisfy the Callan-Symanzik equations which, for the ampu-

tated correlators, take the form[
M

d

dM
+ β(g)

∂

∂g
− nγ(g)

]
Γ(n)

R (pi/m, g) = 0.

If we take all the momenta to be equal for simplicity, then the solutions to the Callan-Symanzik equations
take the form

Γ(n)
R (p/M, g) = Γ(n)(g(p/M)) exp

(
−4

∫ p

M

d log(p′/M)γ(g(p′; g))
)

.

Let us compute the running coupling g(p/M). By the Callan-Symanzik equations, we see that

dg

d log(p/M)
= −β1g

3

16π2
=⇒

∫ g

g

dg

g3 = − β1

16π2

∫
d log(p/M),

=⇒ −1
2

(
1
g2 −

1
g2

)
= − β1

16π2
log(p/M),

∴ g2 =
g2

1 + g2 β1
8π2 log(p/M)

. (2.b.1)

Therefore, we see immediately that when p/M → ∞, 1 becomes insignificant in the denominator of
g2 and so g becomes independent of g. We see that

∴ g2 ≈
p→∞

8π2

β1 log(p/M)
. (2.b.2)

Furthermore, we notice that this approximation can be trusted because nonperturbative effects become
weaker at higher energy scales in an asymptotically free theory.

Let us now compute the dependence of the four-point vertex on momentum as p/M →∞. We assume
that, to the lowest order, Γ(4)

R = g2. We cited the general solution to the (amputated) Callan-Symanzik
equation above. Let us attempt to compute the integral in the exponent which multiplies Γ(4)(g). Using
g from our work above, we see that∫ p

M

d log(p′/M)γ(g(p′; g)) =
∫ p

M

d log(p′/M)
γ1

16π2

g3

(1 + g2 β1
8π2 log(p′/M))3/2

,

=
8π2

β1g2

γ1

16π2

−2g3

(1 + g2 β1
8π2 log(p′/M))1/2

∣∣∣∣∣

p

M

,

= −γ1g

β1

[
1

(1 + g2 β1
8π2 log(p/M))1/2

− 1

]
,

≈
p→∞

γ1g

β1
.

Unfortunately, this result cannot be trusted in general. This is because a very large portion of this
integral came from the lower bound p′ = M as p → ∞. The energy scale M is usually chosen to
represent the beginning of the non-perturbative regime in an asymptotically free field theory so our
one-loop estimate of the functions β(g), γ(g) cannot be trusted near p = M .

However, the calculation has taught us an important lesson. Although the precise value of the
integral is largely uncalculable, the form of the solution is predicted. In particular, our evaluation of
the integral showed us that whatever the result will be, it will be a constant, independent of p at large
momenta. Therefore, using our work from above, the general four-point function will be of the form
Γ(4)econstant ∝ g2. Because we know the behavior of g2 as p/M →∞, we conclude that

∴ Γ(4) ∼
p→∞

8π2

β1 log(p/M)
. (2.c.1)


